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e Limitations
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What’s it for? An Example

e Transverse momentum of
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Including QCD Resummations.

« Kinematics of Leptons from the decays
(Spin correlation included)
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Fixed order pQCD prediction
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( For simplicity, only consider qg—Wg )



 Virtual Corrections

e Real emission contributions
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Perturbative Part:

Higher order in "
mm)> | ess sensitive to Factorization Scale 4

High ¢; and smallery (i.e. more central )
=== PDF (parton distribution function) better known

With larger Luminosity
=== Test QCD in one large scale problem (i.e. & ~Q )

Up to now, most of the Data used in Testing QCD were
One large scale observables, e.g., Jet-P-.

Observables involving Multiple Scales, e.g., g; of W-Boson with mass
M,y, can only be accurately described in QCD after including effects of
Resummation.



Shortcoming of fixed order calculation

= Cannot describe data with small g, of W-boson.

@ Cannot precisely determine my at hadron colliders without knowing the transverse
momentum of W-boson. Most events fall in the small g, region.
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QCD Resummation Is needed
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Corrected Asymmetry
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ResBos Is also needed for
Rapidity distributions
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What’s QCD Resummation?

e Perturbative expansion
do

dg; 1
 The singular pieces, as el (1 or log’s)
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Resummation is to reorganize the results in terms of the large Log’s.



Resummed results:

> Determined by A® and B®
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mmmmd> QCD Resummation

In the formalism by Collins-Soper-Sterman, in addition to
these perturbative results, the effects from physics beyond
the leading twist is also implemented as

[non-perturbative functions].



CSS Resummation Formalism
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| Non-perturbative functions| are functions of (b,Q.x,,Xg) which
include QCD eftects beyond Leading Twist.



o Example: for W=
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The couplings of gauge bosons to fermions are expressed
In the way to include the dominant electroweak radiative
corrections. The propagators of gauge bosons
also contain energy-dependent width, as done in LEP
precision data analysis.
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To preserve transverse momentum conservation, we
Exponentlate have to go to the impact parameter space (b-space) to
perform resummation.

Diagramatically,
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Diagramatically, Resummation is doing
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Monte-Carlo programs ISAJET, PYTHIA, HERWIG contain these physics.

( Note: Arbitrary cut-off scale in these programs to affect the amount of
Backward radiation , i.e. Initial state radiation. )



Monte-Carlo Approach

Backward Radiation
W (Initial State Radiation)

v <—T Kinematics of the radiated gluon, controlled by
Sudakov form factor with some arbitrary cut-off.
( In contrast to perform integration in impact
parameter space, i.e., b space. )

mmm)> The shape of g, (w) is generated. But, the integrated rate remains the
same as at Born level ( finite virtual correction is not included ).

<%  Recently, there are efforts to include part of higher order effect in
the event generator.



Event Generators (PYTHIA, HERWIG)

Note that the integrated rate 1s the same as the Born
level rate ( a %Y even though the d. — distribution is
different (i.e., not §(qT) any more).
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To recover the “K-factor” in the NLO total rate
mm=)  To include the C-Functions
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mmm=)>  The area under the g, — curve will reproduce the total rate at
the order & if Y term is calculated to @ as well.



Include NNLO in high g+ region

* To Improve prediction in high g; region
e To speed up the calculation, it Is

Implemented through K-factor table which

IS a function of (Q, g+, y) of the boson, not
just a constant value.

ResBos predicts both rate and shape
of distributions.




[non-perturbative function] is a function of (b,Q,X,,Xg), Implemented to
Include effects beyond Leading Twist.

Until we know how to calculate QCD non-perturbatively, (Lattice Gauge
Theory?), these functions can only be parameterized. However, the same

functions should describe Drell-Yan, W=, Z° data.

mmm) -« Test QCD in problems involving multiple scales.
» Measuring these non-perturbative functions may help in

understanding the non-perturbative part of QCD.

[non-perturbative functions] , dependent of Q, b, X,, Xz, IS necessary to
describe g — distribution of Drell-Yan, W*,Z° events.

exp| —g,b*> —g,b’In Q —g,9,b* In(100x, x
1 2 193 A'B
2Q, l
New term with
X-dependence

The coefficients g,, g,, g5 need to be determined by existing data.



Effects of Resummation on W and Z Boson physics

Mass information comes primarily from leptonp_ - — —» @ "™
. 5 4]
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Where Is 1t?

 ResBos: http://hep.pa.msu.edu/resum/
e Plotter: http://hep.pa.msu.edu/wwwlegacy

ResBos-A (including final state NLO QED corrections)

has not been updated.
Why? Because it was not used for Tevatron experiments.

The plan is to include final state QED resummation inside ResBos.




Physical processes included in ResBos

W +
Z Including gauge invariant set amplitude
7/’ for Drell-Yan pairs
H
vy, LL,\WW

New physics: W', Z', H*, A%, HO ...



Physics processes inside ResBos

Process A [ B [ ) | order of Pert. part
A+B—-W+ [t 4+v4+ X 3 2 1 NNLO
A+B—-W- =" 4+v+X 3 2 1 NNLO
A+B—Z" =1 +1"+X 3 2 1 NNLO

A4+B = 2%~ — 1T+ +X 3 2 1 NNLO
A4+B =" = 1T+ +X 3 2 1 NNLO
A+ B — g9 — H' — v+ X 3 2 1 NNLO
A+B—gg—H" = Z"ZWTW~- 4 +X | 3 2 1 NNLO
A+B—-WH W+t 4+ H 4 X 3 2 1 NNLO
A+ B—-W* W 4+H +X 3 2 1 NNLO
A+B—-Z" - Z"+H' + X 3 2 1 NNLO

A+B—qfg— v+ X 3 2 1 NLO

A+ B —gg — v+ X 3 2 1 NLO

A+ B —qgg— Z"'Z"+ X 3 2 1 NLO

A+ B — WTW~ + X (upcoming) 3 2 1 NLO

New Physics (upcoming)

Process AW [ BW 1 ) | order of Pert. part
A+ B—-W =1l 4+04+X 3 2 1 NNLO
A+ B—Z' =1 +1"+ X 3 2 1 NNLO
A+ B —bb— A"/H" + X (THDM) 3 2 1 NNLO
A+B—ecs— HT+ X (THDM) 3 2 1 NNLO




ResBos for Higgs Physics

Quark initiated processes: OIW Vv
q R

/ !
 Rate and shape:

» at the same order of accuracy as Drell-Yan processes

Gluon initiated processes:

 Rate and shape:

»at the same order of accuracy as Drell-Yan processes
»consistent with NNLO QCD rate

»include exact - @!”  contribution in high P;



Gluon initiated processes for Higgs production
in ResBos

H 7
New Physics
(MSSM, THDM)
B S
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Predict different shape
ResBos vs PYTHIA vs NLO
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Di-Photon Productions

‘ Theoretical predictions I

Eur. Phys. J. C 16, 311 (2000)

RESBOS PRD 76 013009 (2007)

All-orders resummation (to NNLL
accuracy) matched to NLO.

Single-photon fragmentation
included via parameterization that

approximates rate predicted by
NLO fragmentation functions.

Direct yy production
(a) (b) (c)
1; ;J\;;» ﬂ:\\: Smglrp loton
(@) fragmentation
(h) (0 )
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Compare to CDF Run-2 di-Photon data

< 3':DF Runll Prellrmnary - Costas Ve”idis
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(Data — theory)/theory vs. the diphoton transverse momentum for Higgs — like kinematics



Compare to CDF Run-2 di-Photon data

CDF Run Il Preliminary
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The cut
P.<M

IS tO suppress
fragmentation
contribution

(Data — theory)/theory vs. the diphoton azimuthal distance for Higgs — like kinematics
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do/dg; (pb/GeV)
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Large theoretical uncertainty In

fragmentation contribution

pp — TX. CDF Run-2, 207 pb’
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Resummed
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------- DIPHOX, EX° =4 GeV, iz = Q/2
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pp — YyX. CDF Run-2, 207 pb’*

arXiv:0704.0001
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B Theoretical uncertainties are large in the region
Q<20GeV, Qr 2 27 GeV, Ap < w/2,not relevant for the LHC
HIgQs searches; uncertainties are suppressed by a € < Q cut
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Limitations of ResBos

e Any perturbative calculation is performed with some
approximation, hence, with limitation.

« To make the best use of a theory calculation, we need to
know what it is good for and what the limitations are.

It does not give any information about the
hadronic activities of the event.

==> |t could be used to reweight the distributions

generated by (PYTHIA) event generator,

by comparing the boson (and it decay products)
distributions to ResBos predictions.

This has been done for W-mass analysis by CDF and DO)




Potential of ResBos yet to be explored

* E.g., In the measurement of forward-backward
asymmetry in Drell-Yan pairs.

ResBos can be used for Matrix Element Method by including
resummed k-dependent parton distribution functions together
with higher order matrix element contributions.

For example: The coefficients in front of the complete set of
angular functions are given by ResBos
1 1

Lo=1+cos* 0, Ay = 5(1 — 3cos“ ), A, =sin20cos ¢, Ay = 5 sin“ 6 cos 20,

=

Ji]l,'_J.. = 2 cos f':']? _)‘—1_1 — sin & cos D.



Conclusion

e ResBos is a useful tool for studying electroweak
gauge bosons and Higgs bosons at the Tevatron
and the LHC.

e Itincludes not only QCD resummation for low g
region but also higher order effect in high g5
region, with spin correlations included via gauge
Invariant set of matrix elements.

If you use it, | will keep providing the service
to our community. Please send the request to me.
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ResBos vs DO Run-2 A data
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